
LANTHANIDE INDUCED SHIFTS ON THE CARBON-13 CHEMICAL SHIFTS OF 2-ADAMANTANOL AND 2-ADAMANTANETHIOL¹ Helmut Duddeck* and Wolfgang Dietrich Ruhr-Universität Bochum, Abteilung für Chemie D-463 Bochum, West Germany, Postfach 2148

(Received in UK 23 June 1975; accepted for publication 7 July 1975)

Maciel and coworkers² recently reported different chemical shifts for the two δ carbons of 2-substituted adamantanes. They carried out a tentative assignment in analogy to the well known assignment of the two γ carbons. In this case the signals of the carbons in $\gamma_{\rm syn}$ position relative to the substituent are shifted significantly upfield compared with those of the $\gamma_{\rm anti}$ carbons which is due to a steric compression. Newly published findings² show that for δ carbons another interaction mechanism dominates, because $\delta_{\rm syn}$ carbons can be more deshielded than $\delta_{\rm entile}$ carbons.

Measurements of the longitudinal relaxation times T_1 of the carbons of 2-monosubstituted adamantanes⁴ and the chemical shifts of 4substituted adamantanones⁵ clearly demonstrate that the δ_{anti} carbons of 2-substituted adamantanes are more shielded than the δ_{syn} carbons. The sequence of the two δ signals is reverse to the sequence of the γ signals. This assignment is now confirmed by the LIS data of the compounds <u>1</u> and <u>2</u>: The substrates for the LIS measurements are 2-adamantanol (1) and 2-adamantanethiol (2)⁶.

Though 2 is a weakly complexing reagent, it

$$\frac{1}{2}: X = OH$$
$$\frac{2}{2}: X = SH$$

was chosen because relaxation measurements have shown that the T_1 values of the δ carbons differ significantly only if X is a relatively heavy substituent as SH, Cl, Br or I. For X = OH and NH₂ these two T_1 values are nearly identical, thus no assignment of the δ signals can be executed from such measurements.

The spectra were recorded with a Bruker WH 90 spectrometer. The chemical shifts are in ppm relative to TMS as internal standard, the solvent being CDCl₃.

Table 1 : Chemical Shifts of 2-Substituted Adamantanes^a

	α	β	^Y syn	^Y anti	⁸ syn	⁸ anti	¢
X = OH	74.7	34.7	31.2	36.7	27.8	27.3	37.8
X = SH	46.5	35.7	31.0	38.9	27.9	27.1	37.9

^a In ppm; TMS: O ppm; positive values correspond to deshielding.

From the measured LIS, $\Delta \delta$, the experimental b_1 values were calculated using the following equation: $\Delta \delta = b_1 \frac{n}{m} \qquad (1)$

with n representing the molarity of the shift reagent and m the molarity of the substrate <u>1</u> or <u>2</u>. The maximal n/m ratios are given in the last column of Table 2. The experimental b_1 's are interpreted according to the McConnell equation: $b_1 = c \frac{3\cos^2\alpha_1 - 1}{2}$ (2)

$$b_{1} = c \frac{3\cos^{2}\alpha_{1} - 1}{r_{1}^{3}}$$
(2)

and were approximated as far as possible by iterative determination of the position (x_0, y_0) of the lanthanide ion with a relative least square fit:

$$S = \sum_{1} \left[\frac{c \frac{3\cos^{2}\alpha_{1}-1}{r_{1}^{3}} - b_{1}}{b_{1}} \right]^{2}$$
(3)

where S is the sum of the squared deviations. The position of the lanthanide ion was assumed to be in the symmetry plane of the molecule $(z_0 = 0)$. Therefore an iteration only for x_0 , y_0 and c was performed. The experimental and the calculated b_1 values are listed in Table 2, the calculated values in parentheses.

Results

2-Adamantanol + Eu(dpm)₃:

Recently it was reported ⁷ that contact interaction for LSR complexes with alcohols is restricted essentially to the nearest carbon. Therefore the iteration of the LIS was carried out excluding the α carbon. The calculations provided a distance Eu = 0 of 4.9 Å and the angle $C_{\alpha} = 0$ - Eu = 177.1°. A contact term of about 39 ppm for the α carbon could be derived from the difference between the experimental and the calculated b_{α} . The b_i 's were calculated with both alternative assignments of the two δ signals. A remarkably smaller divergence between the experimental and the calculated b_1 's resulted, if the assignment is that given in Table 1. That means, the δ_{anti} carbon is more shielded than the δ_{syn} carbon.

: Experiments using equat	, and calculated b ₁ values	I
	Table 2 : Experimental b _i values from equation (1) and error limits (95%), and calculated b _i values	using equations (2) and (3) in parentheses.

	ð	60.	۲ syn	Yanti	8 syn	8 antı	y	n/m _{max}
X = OH (<u>1</u>) + Eu(dpm) ₃	61 . 85 ± 10%	16.43 ± 11%	16.96 ± 14%	8.25 ± 11%	11 • 17% ± 14%	8°14 + 14%	6.99 ± 10%	0.2
	(22.70)	(16.13)	(16.81)	(8.96)	(11.35)	(7,56)	(6.86)	
X = SH (<u>2</u>) + Eu(fod) ₃	0.3916 ± 6%	0.1692 ± 19%	0.2098 ± 16%	0.1388 ± 16%	0.1969 ± 19%	0.1564 ± 25%	0.1255 ± 26%	0.5
	(0-3750)	(0.2006)	(0.2056)	(0.1486)	(0.1709)	(0.1321)	(0.1293)	
X = SH (<u>2</u>) + Yb(dpm) ₃	0.1437 ± 23%	-0.3224 ± 8%	-0.3996 ±6%	-0.3177 ±5%	-0.3960 ± 7%	-0.3557 ± 11%	-0.3285 ±9%	0.5

2-Adamantanethiol + Eu(fod)₃: An analogous result for the two & carbons and therefore the same assignment was obtained with the same least square fit. The distance Eu - S was 10.3 Å and the angle C_{α} - S - Eu was 170.0°. The relatively large distance between Eu and sulphur is understandable, if we consider that a mercapto group complexes rather weakly. Here the lanthanide position was also iterated including the C_{α} signal, too. No significant contact interaction could be detected.

2-Adamantanethiol + Yb(dpm)z:

Surprisingly, in this experiment all carbon chemical shifts are shifted upfield by the LSR. With the exception of the C_{α} signal the b_i values of all signals are very similar. Therefore we assume that an upfield shift of the entire spectrum has occurred, caused by a change of the susceptibility in solution. Relative to that general upfield shift the signal of the α carbon is shifted downfield. No calculation was carried out in this case, of course.

REFERENCES AND FOOTNOTES

- 1 Carbon-13 Nuclear Magnetic Resonance Spectra II, for part I see ref. 5.
- 2 G. E. Maciel, H. C. Dorn, R. L. Greene, W. A. Kleschick, M. R. Peterson Jr and G. H. Wahl Jr, Org. Magn. Resonance <u>6</u>, 178 (1974)
- 3 S. H. Grover, J. P. Guthrie, J. B. Stothers and C. T. Tan,
 J. Magn. Resonance <u>10</u>, 227 (1973);
 S. H. Grover and J. B. Stothers, Can. J. Chem. <u>52</u>, 870 (1974)
- 4 W. Dietrich, H. Duddeck and R. Gerhards, to be published
- 5 H. Duddeck, Org. Magn. Resonance 7 (1975), in press
- 6 J. W. Greidanus, Can J. Chem. <u>48</u>, 3593 (1970)
- 7 D. J. Chadwick and D. H. Williams, J. C. S. Perkin II 1974, 1202